Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Jin Mizuguchi

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.118$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were
automatically derived from the article, see
http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Dihydro-2,5-dimethyl-3,6-diphenyl-pyrrolo[3,4-c]pyrrole-1,4-(diylidene)bis(cyanamide) chloroform disolvate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \cdot 2 \mathrm{CHCl}_{3}$, a diketopyrrolopyrrole analogue (red pigment), has C_{i} symmetry and the phenyl rings are at an angle of $53.5(1)^{\circ}$ to the planar heterocylic ring system.

Comment

3,6-Diphenylpyrrolo[3,4-c]pyrrole-1,4-dione (DPP) and its derivatives are well known red pigments on the market (Mizuguchi et al., 1992). The title compound, (I), is a 1:2 solvated complex of a DPP analogue with chloroform. The unsolvated analogue, obtained by recrystallization from methylene chloride, exhibits intense orange luminescence (Mizuguchi, 2003), whereas the present solvated analogue is red in color and has some luminescent properties.

(I)

The title pigment molecule has a centre of symmetry at the mid-point of the central bond of the heterocyclic ring system. The latter is entirely planar. Each aryl ring is twisted from the heterocyclic system by $53.5(1)^{\circ} \quad\left[\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 10^{\mathrm{i}}\right.$; symmetry code (i): $-x, 1-y,-z]$. The molecular conformation is quite similar to that of the unsolvated compound (Mizuguchi, 2003). It is also of interest to note that the angle $\mathrm{N} 2-\mathrm{C} 11-\mathrm{N} 3$ is not exactly 180° [because of the repulsion between atoms N 3 and C^{i} at 3.125 (4) \AA] and that the plane composed of atoms $\mathrm{C} 9 / \mathrm{N} 2 / \mathrm{C} 11 / \mathrm{N} 3$ is at an angle of 10.7 (1) ${ }^{\circ}$ to the heterocyclic ring. Fig. 2 shows the projection on to the $a b$ plane. All other bond parameters agree well with those of the unsolvated compound (Mizuguchi, 2003) and also of DPP (Mizuguchi et al., 1992). The chloroform molecules are stacked in channels along the c axis (Fig. 2).

Experimental

The title compound was prepared by reacting 1,4 -diketo-3,6-di-phenylpyrrolo[3,4-c]pyrrole with bis(trimethylsilyl)carbodiimide in the presence of TiCl_{4} (Zambounis et al., 1994). The product was purified by sublimation under argon at about 575 K , using a two-zone furnace (Mizuguchi, 1981). Single crystals of (I) were grown from a chloroform solution by slow evaporation.

Received 26 August 2003
Accepted 1 September 2003
Online 11 September 2003

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=603.16$
Monoclinic, $P 2_{1} / c$
$a=8.656$ (3) A
$b=13.768$ (7) \AA
$c=11.670(5) \AA$
$\beta=110.61$ (2) ${ }^{\circ}$
$V=1301.8(10) \AA^{3}$
$Z=2$

Data collection

Rigaku RAXIS-RAPID Imaging
Plate diffractometer
ω scans
Absorption correction: multi-scan
(Higashi, 1995)
$T_{\text {min }}=0.396, T_{\text {max }}=0.883$
11504 measured reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.29$
2235 reflections
163 parameters
$D_{x}=1.539 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} \mathrm{K} \alpha$ radiation
Cell parameters from 6142
reflections
$\theta=4.0-67.6^{\circ}$
$\mu=6.25 \mathrm{~mm}^{-1}$
$T=93.2 \mathrm{~K}$
Platelet, red
$0.30 \times 0.15 \times 0.02 \mathrm{~mm}$

2361 independent reflections
1924 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=68.2^{\circ}$
$h=-9 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-14 \rightarrow 14$

H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left(0.05\left(\operatorname{Max}\left(F_{o}{ }^{2}, 0\right)+\right.\right.\right.$ $\left.\left.\left.2 F_{c}^{2}\right) / 3\right)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.010$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{N} 1-\mathrm{C} 7$	$1.377(3)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.160(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.468(3)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.463(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.401(3)$	$\mathrm{C} 7-\mathrm{C} 10$	$1.381(3)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.304(3)$	$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$1.434(3)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.330(3)$	$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$1.425(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$125.4(2)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 10$	$130.2(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9$	$111.3(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 2$	$118.4(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$122.6(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$105.2(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 11$	$120.7(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$136.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$122.3(2)$	$\mathrm{C} 7-\mathrm{C} 10-\mathrm{C} 9^{\mathrm{i}}$	$144.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$118.4(2)$	$\mathrm{C} 7-\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$109.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.7(2)$	$\mathrm{C} 9^{\mathrm{i}}-\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$107.0(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$122.3(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{N} 3$	$172.9(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 10$	$107.2(2)$		
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2$	$-54.3(3)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}$	$5.6(6)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6$	$125.2(3)$	$\mathrm{C} 10-\mathrm{C} 9^{\mathrm{i}}-\mathrm{N} 2^{\mathrm{i}}-\mathrm{C} 11^{\mathrm{i}}$	$-5.1(4)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 11$	$-170.7(2)$		

Symmetry code: (i) $-x, 1-y,-z$.
X-ray intensity data were collected at 93 K , since the solvent molecules (choloroform) sublime quite rapidly at room temperature. All H atoms were positioned by calculation ($\mathrm{C}-\mathrm{H} 0.950-0.951 \AA$) but not refined.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: TEXSAN.

The author expresses his sincere thanks to Mr I. Suzuki for experimental assistance.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Figure 1
A view of the molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms.

Figure 2
Projection of the crystal structure on to the $a b$ plane.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Mizuguchi, J. (1981). Cryst. Res. Technol. 16, 695-700.
Mizuguchi, J. (2003). Z. Kristallogr. New Cryst. Struct. 218, 141-142.
Mizuguchi, J., Grubenmann, A., Wooden, G. \& Rihs, G. (1992). Acta Cryst. B48, 696-700.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany. Zambounis, J., Hao, H. \& Iqbal, A. (1994). US Patent 5484943.

